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Abstract
Intensive longitudinal data have been increasingly used to examine dynamic bidirectional relations between
variables. However, the problem of timescale mismatch between variables faced by applied researchers
remains understudied. Under the dynamic structural equation modeling framework, previous studies used
the partial-path model and the average-score model, respectively, to explore the dynamic interaction pro-
cesses and overall reciprocal effects between variables with mismatched timescales. The present study
aimed to evaluate the performance of the existing modeling approaches and the effectiveness of the
improved approaches (i.e., the full-path model, the factor model, and the adjusted factor model). Study 1
showed that the full-path model, which considered the cross-lagged effects of all time points of variables
with denser timescales, better reflected dynamic interaction processes and time-specific effects between var-
iables than the partial-path model. Study 2-1 found that the estimates of autoregressive and cross-lagged
effects between timescale mismatched variables were biased in the average-score model, but accurate in
the factor model. Study 2-2 further suggested that when there were regression effects between different
time points of variables with denser timescales, the adjusted factor model obtained less bias than the factor
model, yet the difference is negligiblewhen the regression effects are small. Study 3 used empirical datawith
timescale mismatched variables to illustrate the differences of all modeling approaches. This study identified
the important problem of timescale mismatch in intensive longitudinal data and its possible solutions, pro-
viding methodological guidance and valuable insights for data collection and analysis of variables with mis-
matched timescales.

Translational Abstract
In intensive longitudinal studies, some variables are measured more frequently, for example, four times a
day, while others are measured less often, such as once a day. How can we investigate the dynamic relations
between two variables with different measurement frequencies? This study aims to provide an answer.
Several existing modeling approaches (namely, the partial-path model and the average-score model) were
evaluated, and improved solutions (the full-path model, the factor model, and the adjusted factor model)
were also proposed. The full-path model, which fully considers the cross-lagged effects of all time points
of variables with denser timescales, thereby offering a more precise depiction of dynamic interactions
and effects at specific time points, significantly outperforms partial path models. Additionally, the
average-score model exhibits greater bias in estimating autoregressive and cross-lagged effects compared
to the factor model, whereas the adjusted factor model can further reduce bias. Finally, these models
were demonstrated using empirical data on the relation between stress feelings at different times of the
day and daily sleep quality. The results indicated that the improved solutions are better suited to identifying
the most influential timings of stress feelings within a day. Methodological guidance for data collection and
modeling strategies, as well as Mplus code, were also provided.
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In recent years, intensive longitudinal data (ILD) have been
increasingly used in social and behavioral sciences such as psychol-
ogy (Hamaker &Wichers, 2017; Luo et al., 2024; Zhou et al., 2021).
It helps researchers understand dynamic processes and interactions
between individuals’ states in natural settings. In contrast to retro-
spective surveys and laboratory studies, ILD offers advantages like
reduced recall bias and increased ecological validity (Bolger et al.,
2003; Shiffman et al., 2008; Trull & Ebner-Priemer, 2013). For
data collection, researchers commonly employ daily diaries, ecologi-
cal momentary assessment (EMA), and experience sampling method
(Bolger & Laurenceau, 2013; Bolger et al., 2003; Shiffman et al.,
2008). Besides using self-reported questionnaires as subjective
measures of individuals’ states, the enhanced accessibility of
advanced techniques allows for more objective measures using dig-
ital devices (e.g., sensors and mobile phones; Schick et al., 2023).
Regarding data analysis, a novel modeling approach, dynamic struc-
tural equation modeling (DSEM; Asparouhov et al., 2018), has been
proposed and has gained widespread use in recent years for analyz-
ing ILD. This modeling framework integrates the strengths of mul-
tilevel modeling, structural equation modeling, and time series
modeling to more effectively investigate thewithin-person processes
between variables as well as the between-person differences of these
dynamic processes.
Despite the effectiveness of recently developed statistical methods

for modeling ILD, researchers have identified several methodologi-
cal issues in ILD analyses (Hamaker & Wichers, 2017). Among
these issues, some researchers have concentrated on problems
related to the timing of repeated measurements in ILD, such as the
problem of time-interval dependency (Kuiper & Ryan, 2018;
McNeish & Hamaker, 2020) and temporal misalignment (Luo &
Hu, 2024). Time-interval dependency refers to the issue where esti-
mated parameters depend on the specific time intervals chosen for
the study. If the time intervals are equal, the estimated parameters
can only be interpreted within the context of that specific interval.
If the time intervals are unequal, treating them as equal can bias
the parameter estimates. Temporal misalignment refers to situations
where two variables have the same density of timescales (e.g., both
mood and sleep measured at 1-day intervals) but are measured at dif-
ferent times (e.g., mood measured during the day and sleep at night).
Both problems (i.e., time-interval dependency and temporal mis-
alignment) consider variables with the same density of timescales.
However, another practical problem faced by empirical researchers
on ILD—the problem of timescale mismatch (which is described
in detail in the next section)—remains understudied.

Timescale Mismatch in ILD

In ILD, if the time interval between consecutive measurements of
one variable differs from that of another variable, there is a timescale
mismatch between the two variables (see Figure 1). For example, a
researcher may be interested in the dynamic bidirectional relation
between individuals’ affect (X ) and exercise (Y ). Considering that
affect fluctuates more over time and that its measurement is usually

based on the current moment, the researcher measures affect four
times a day, with 4 hr between each measurement. In contrast,
given that exercise takes time and its measurement is usually
based on a longer period of time, the researcher measures exercise
once a day (e.g., participants are asked to report the total number
of minutes of exercise each day before sleep). In this case, there is
a 4-hr interval between consecutive measurements of affect and a
1-day interval between consecutive measurements of exercise, sug-
gesting a mismatch in timescales between the two variables.

In general, variables with mismatched timescales have the follow-
ing characteristics. Variables with denser timescales fluctuate more
over time and are usually assessed on shorter time intervals (e.g.,
hours or minutes). For example, self-reported positive and negative
affect may change within a few hours and are usually measured with
a time reference “at the moment.” In addition, physical and physio-
logical states, such as physical activity and sedentary behavior, can
also change substantially in a short period of time, and their fluctu-
ations are often better captured with real-time sensors (e.g., acceler-
ometers; Liao et al., 2017; Maes et al., 2023). In contrast, variables
with sparser timescales show weaker fluctuations over time and are
usually assessed on longer time intervals (e.g., 1 day). First, some
variables can only be measured on sparser timescales due to objec-
tive constraints. For example, due to natural rhythms, a person’s
sleep duration can only be measured at 1-day intervals. Second,
some variables occur less frequently or need to be accumulated
over a long period of time, and are therefore more suitable for assess-
ment on sparser timescales. For example, measuring a person’s exer-
cise on longer time intervals (e.g., 1 day) may better reflect
fluctuations in that person’s exercise. Third, some variables occur
at specific times of the day. For example, researchers may be inter-
ested in the dynamic associations between an individual’s state at
a specific time point (e.g., a child’s school refusal behavior each
morning) and his or her other states at other times of the day (e.g.,
the child’s affective well-being at school). In this case, researchers
are likely to use different timescales to assess different state
variables.

The importance of choosing appropriate timescales has been
emphasized in dynamic studies. Researchers have examined the
impacts of sampling frequency on parameter estimation accuracy

Figure 1
Illustration of Timescale Mismatch

Note. X has a denser timescale, while Y has a sparser timescale. See the
online article for the color version of this figure.
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(Batra et al., 2023) and reliability (i.e., the standard errors of the
parameter estimates (Adolf et al., 2021). Batra et al. (2023) showed
that the estimation of autoregressive effects can be highly biased if
the sampling timescales are sparser than the true timescales (data-
generating timescales) of given processes. Furthermore, Adolf
et al. (2021) demonstrated how to determine the optimal sampling
frequency that leads to minimal standard errors. Regarding digital-
phenotyping data, Langener et al. (2024) demonstrate the impacts
of time-related decisions (e.g., the choice of temporal resolution to
aggregate data of variables with denser timescales) on the estimated
associations between variables of interest. By summarizing existing
literature and expert opinions, Velozo et al. (2024) provided practical
guidelines for designing studies that combine experience sampling
data (typically with sparser timescales) with wearables and passive
sensing data (typicallywith denser timescales). These help researchers
make informed decisions about the timescales on which to sample the
variables of interest. However, researchers face methodological chal-
lenges when attempting to investigate the dynamic relations between
these variables.
Twomodeling frameworks are primarily considered for analyzing

(intensive) longitudinal data: discrete-time models and continuous-
time models. Discrete-time models (e.g., DSEM) assume equal
time intervals between consecutive measures. However, this
assumption is often violated in ILD, where time intervals may
vary between repeated measures within an individual and across
individuals (Voelkle et al., 2012). Although some practical solutions
have been proposed to address this issue (e.g., by inserting phantom
variables at missing occasions (Voelkle &Oud, 2015), and rescaling
variables to equal time intervals and then filling in missing data
(Asparouhov et al., 2018)), parameter estimates of discrete-time
models still suffer from time-interval dependency (i.e., parameter
interpretation depends on the time interval between consecutive
measures; Kuiper & Ryan, 2018). Continuous-time models (e.g.,
stochastic differential equation models; Oravecz et al., 2011;
Voelkle et al., 2012) can circumvent these issues. By assuming
an underlying continuous function for the dynamic process,
continuous-time models treat time as a continuum of real values,
rather than a sequence of discrete integer values. This allows for
unequal time intervals between consecutive measures and enables
flexible parameter interpretation and comparison by rescaling them
to different time intervals (Voelkle et al., 2012). Currently, several
software implementations support fitting continuous-time models.
For example, R packages such as dynr (Ou et al., 2019), ctsem
(Driver et al., 2017), and OpenMx (Neale et al., 2016) can be used
for continuous-time modeling, while Mplus recently provides a
continuous-time version of DSEM (Asparouhov & Muthén,
2024). Despite the conceptual advantages and growing implementa-
tion of continuous-time models, they are notably more complex to
understand compared to other discrete-time models (e.g., DSEMs)
commonly used for ILD analyses by psychologists. This complexity
is further exacerbated when examining the dynamic interplay
between variables with mismatched timescales. Therefore, existing
studies have mainly used discrete-time modeling approaches to
address two types of research questions regarding timescale mis-
matched variables, one focusing on denser timescales and the
other on sparser timescales, which are further elaborated in the fol-
lowing two paragraphs.
Focusing on the denser timescales, some researchers were inter-

ested in the detailed processes of the dynamic interplay between

variables with mismatched timescales. For example, a study
explored the dynamic relation between accelerometer-assessed
physical activity and individuals’ self-reported affective, intentional,
and physical states (Maes et al., 2023). Participants completed a
questionnaire 6 times a day to evaluate their states, and their physical
activity was captured by the accelerometer 15, 30, 60, and 120 min
after each questionnaire. For each of the four time lags, the research-
ers constructed separate multilevel models to explore the lagged
effects of individuals’ self-reported states on their accelerometer-
assessed physical activity. In another study examining the dynamic
bidirectional relation between self-rated health and sleep (Lücke
et al., 2023), researchers measured self-rated health six times
per day and sleep once per day. In their additional analyses, research-
ers assumed that individuals’ last self-rated health before
sleep predicted that day’s sleep, and the night sleep predicted
the first self-rated health after waking. Therefore, they used DSEM
to estimate only the cross-lagged effects between the temporally
closest time points of self-rated health and sleep (in other words,
the cross-lagged effects corresponding to the shortest time interval)
to examine their dynamic process (see Figure 2a for a demonstrative
model).

Focusing on the sparser timescales, other researchers aimed to
examine the overall reciprocal effects between variables with mis-
matched timescales. For example, in a study exploring the dynamic
reciprocal effects between affective well-being and sleep (Neubauer

Figure 2
Dynamic Structural Equation Models for Studying Dynamic
Interplay Processes Between Variables withMismatched Timescales

(a) Partial-path model

(b) Full-path model

Note. Current practice (a) and its improvement (b) for studying dynamic
interplay processes between variables with mismatched timescales. For
simplicity, only thewithin-personmodels are presented here. The between-
person models include all random effects (corresponding to the solid dots
in the within-person models) and estimate the correlations among X1, X2,
X3, X4, and Y. See the online article for the color version of this figure.
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et al., 2021), researchers measured positive and negative affect four
times per day and sleep duration and quality once per day. To esti-
mate the overall effects of the dynamic interaction between affect
and sleep, the researchers aggregated the four daily measures of
affect (morning, late morning, afternoon, and evening) into one aver-
age score that reflects an individual’s overall affect state each day.
After adjusting affect to the same 1-day timescale as sleep, the
researchers estimated the cross-lagged effects between affect and
sleep in a DSEM (see Figure 3a for a demonstrative model).

Current Issues and Possible Solutions

Although studies have proposed some approaches to address the
problem of timescale mismatch between variables, each approach

has its limitations. On the one hand, in studies focusing on detailed
processes of dynamic interactions between variables, analyses based
on separate multilevel models (corresponding to different time lags
between variables) did not take into account the time-series pro-
cesses (or, autoregressive processes) of variables with denser time-
scales, and were unable to estimate the effects of one time point
after controlling for the effects of other time points. In addition,
under the framework of DSEM, the partial-path model (see
Figure 2a) that considers only the cross-lagged effects between the
temporally closest time points between variables relied on strong
assumptions about the dynamic interaction process between vari-
ables. These cross-lagged effects may not adequately reflect the
dynamic interplay processes between variables. Moreover, the recip-
rocal effects between variables did not necessarily decrease as their
corresponding time intervals increased, and each time point (not
only the closest time point) of the variables with denser timescales
may have a cross-lagged effect with the variables with sparser time-
scales. This suggested that the partial-path model may neglect time-
specific reciprocal effects between timescale mismatched variables.
In contrast, the full-path model (see Figure 2b) takes into account all
possible reciprocal effects between variables and is more flexible to
apply in different situations. Therefore, in order to better understand
the process of dynamic interactions between variables with mis-
matched timescales, we believe it is more appropriate to examine
the full-pathmodel (Figure 2b) than the partial-pathmodel (Figure 2a).

On the other hand, regarding the overall reciprocal effects
between timescale mismatched variables, existing studies primarily
adopt the average-score model (see Figure 3a) to match the time-
scales of the two variables. However, this approach has several lim-
itations. First, the average-score model fails to fully utilize the
information of variables with denser timescales. Second, calculating
the average score for the variable with a denser timescale does not
take into account the different contributions of the variable’s differ-
ent time points (e.g., morning and evening) to its overall level over a
longer period (e.g., a day; McNeish &Wolf, 2020). Third, modeling
based on average scores cannot reflect the temporal relations
between different time points of the variable with a denser timescale
(Hamaker &Wichers, 2017; Zhou et al., 2021). For the first two lim-
itations, a common solution within the context of structural equation
modeling is to construct latent factors (Fan, 2003; Oh & Jahng,
2023). Therefore, we propose a factor model (see Figure 3b), in
which the differences in the contributions of different time points
to the overall level can be reflected by the factor loadings of different
time points on the latent state factor. The latent factors of the two var-
iables are matched in their timescales, which enables the examina-
tion on the overall cross-lagged effects between the two variables.

Furthermore, concerning the third limitation of the average-score
model, we believe that a more reasonable and flexible assumption
(i.e., a weaker assumption) is that after accounting for the common
factor of different time points of the variable with a denser timescale,
there is still temporal dependence between these time points.
Therefore, we constructed an adjusted factor model (see Figure 3c),
incorporating regression effects1 between different time points
of the variable with denser timescales into the factor model.

Figure 3
Dynamic Structural Equation Models for Studying Overall
Reciprocal Effects Between Variables with Mismatched Timescales

(a) Average-score model

(b) Factor model

(c) Adjusted factor model

Note. Current practice (a) and its improvement (b) and (c) for studying over-
all reciprocal effects between variables with mismatched timescales. For sim-
plicity, only thewithin-personmodels are presented here. The between-person
models are detailed in the Simulation Conditions section in Study 2-1 and
Study 2-2. See the online article for the color version of this figure.

1 In this study, we use the regression effect (i.e., a12, a23, a34, and a41 in
Figure 3c) to refer to the temporal dependency between different time points
of the variable with denser timescales in the adjusted factor model.
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The inclusion of these regression effects suggests that different time
points of the variable with denser timescales may not be completely
independent indicators of a latent factor, as posited by traditional
measurement models, but are temporally interdependent, highlight-
ing a dynamic temporal process.
Taken together, from the perspective of constructing latent fac-

tors, we examined the factor model (see Figure 3b) and the adjusted
factor model (see Figure 3c). The only difference between these two
models is whether they take into account the within-person regres-
sion effects between different time points of variables with denser
timescales and the individual differences in these effects. By com-
paring the three modeling approaches (i.e., the average-score
model, the factor model, and the adjusted factor model), we aim
to offer effective and practical solutions for empirical studies exam-
ining the overall reciprocal effects between variables with mis-
matched timescales.

The Present Study

The main objective of this study is to explore possible solutions
for timescale mismatch in ILD based on DSEMs. Previous research
has primarily focused on two types of relevant research questions
(i.e., the detailed processes of dynamic interactions between vari-
ables, and the overall reciprocal effects of bidirectional relations
between variables) and proposed preliminary approaches (i.e., the
partial-path model, and the average-score model) to model the
dynamic relations between variables with mismatched timescales.
The study assessed the limitations of existing approaches and pro-
posed possible improvements (i.e., the full-path model, and the
(adjusted) factor model).
Specifically, three simulation studies were conducted to demon-

strate the issues in existing approaches and to evaluate the effective-
ness of the proposed approaches. In Study 1, we focused on the
detailed processes of dynamic interactions between variables, com-
paring the partial-path model and the full-path model. We expected
that the full-path model would outperform the partial-path model. In
Study 2, we focused on the overall reciprocal effects of bidirectional
relations between variables. Study 2-1 compared the average-score
model with the factor model, and Study 2-2 compared the factor
model with the adjusted factor model. We expected the factor
model to outperform the average-score model, while we did not
have clear anticipation regarding the choice between the factor
model and the adjusted factor model. In Study 3, we applied empir-
ical data with timescale mismatched variables to illustrate the differ-
ences in the modeling approaches for the two types of research
questions (i.e., the partial-path model, and the full-path model; the
average-score model, the factor model and the adjusted factor
model).

Study 1: Dynamic Interaction Processes of Timescale
Mismatched Variables

Method

Transparency and Openness

Data were analyzed using Mplus Version 8.10 (Muthén &
Muthén, 1998–2017), and R, Version 4.2.2 (R Core Team, 2020),
the package ggplot2, Version 3.4.0 (Wickham, 2011), and the pack-
age MplusAutomation, Version 1.1.0 (Hallquist & Wiley, 2018).

All data, code, and materials have been uploaded to the Open
Science Framework repository (https://osf.io/fdpsj; Luo, 2024).
This study was not preregistered.

Procedure

To examine how to better describe dynamic processes between
variables with mismatched timescales, we first simulated the data
of two variables. Specifically, we adjusted the number of significant
cross-lagged effects under different simulation conditions so that the
true models were the partial-path model (see Figure 2a) and the full-
path model (see Figure 2b), respectively. The timescale of one var-
iable (i.e., X ) in the data was several times denser than that of the
other variable (i.e., Y ). The data were generated in Mplus. The sim-
ulation was replicated for 100 times.

Then, we fit the simulated data to the partial-path model and the
full-path model, respectively. The model parameters were estimated
in Mplus using Bayesian estimation. Two Gibbs-sampler chains
were used, each with a minimum number of iterations of 3,000
and a maximum number of iterations of 10,000 (given that the
parameter estimation was time consuming2). Model convergence
was determined according to the potential scale reduction (PSR)
of the parameters. In addition, we examined the parameter estimates
for both models to exclude outliers (i.e., a variance or covariance of
any variable or parameter greater than 2 was considered an outlier as
the true values of (co)variances were (much) less than 1). Finally, the
parameter estimation results from converged models and without
outliers were used to evaluate the performance of the partial-path
model and the full-path model. The R package MplusAutomation
(Hallquist & Wiley, 2018) was used to replicate the parameter esti-
mation for 100 times.

We evaluated the performance of the partial-path model and the
full-path model based on their parameter estimation, power, and
model convergence. First, we calculated the mean (ŵ) of 100 param-
eter estimates for the autoregressive and cross-lagged parameters. To
evaluate the estimation accuracy, we calculated the bias (ŵ−Φ) and

relative bias ŵ−Φ
Φ

( )
of each parameter, whereΦ denotes the true val-

ues of the parameters. Then, we calculated the root-mean-squared
error to evaluate the estimation efficiency. In addition, for parame-
ters whose true values are not 0, we calculated their power as the per-
centage of significant cases (i.e., 95% credible intervals excluding
zero) in the 100 replications. For parameters with a true value of
0, their type I errors (i.e., the percentage of significant cases over
the 100 replications) were calculated. Regarding model conver-
gence, models with PSR less than 1.1 for all parameters were consid-
ered convergent. We calculated the percentage of the number of
models that converged in 100 parameter estimations.

Simulation Conditions

Study 1 considered 18 simulation conditions (see Table 1). We
first set a reference condition (Condition 1) in which the autoregres-
sive effects of the variables with the denser (i.e., X ) and the sparser

2 Study 1 and Study 2-1 used a server with a 16-core central processing unit
and 90GB dynamic random-access memory, and the simulation studies took
approximately 70 hr and 150 hr, respectively. Study 2-2 used a server with a
64-core central processing unit and 128GB dynamic random-access memory,
and the simulation took approximately 900 hr.
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(i.e., Y ) timescale were set to 0.3 and 0.1, respectively, the cross-
lagged effects between X and Y were set as 0.3, 0.25, 0.2, and
0.15 (assuming that the cross-lagged effects diminished as the corre-
sponding time interval increases), the sample size was set to 200, the
number of time points per subject for Y was set to 15, the timescale
mismatch ratio was set to 4:1, and the proportion of missing data for
X and Y was set to 0%.
Then, we varied the autoregressive effects of X and Y, the cross-

lagged effects between X and Y, the sample size, the number of
time points per subject for Y, the timescale mismatch ratio, and the
proportion of missing data to compare the performance of the partial-
path model and the full-path model. Specifically, for the autoregres-
sive effects of X and Y, we set them to 0.1, 0.3, and 0.5 to reflect
small, medium, and large autoregressive effects. For the cross-lagged
effects between X and Y, we set Condition 2 to reflect the situation
where the cross-lagged effect is significant only between X and Y
that are closest in time (i.e., the true model is the partial-path
model), and set Conditions 3 and 4 to represent common situations
in empirical studies where one variable has a greater lagged effect
on the other. Regarding sample size, we used 100, 200, and 300 to
represent the small, medium, and large samples in intensive longitu-
dinal studies that examine dynamic bidirectional relations between
variables (Luo et al., 2024). Regarding the number of time points
per subject for Y, we used 7, 15, and 30 to represent the small (e.g.,
Lücke et al., 2023), medium, and large (e.g., Neubauer et al., 2021)
number of time points in intensive longitudinal studies on variables

with mismatched timescales. Additionally, we set Conditions 13
and 14 to examine the interplay of small/large sample size and
large/small number of time points. In terms of the timescale mismatch
ratio, we set 3:1, 4:1, and 5:1 to reflect different degrees of mismatch
between the timescale of variables (Luo et al., 2024). To investigate
the impact of missing data, we set the proportion of missing data
for X and Y to 20% and 40% in Conditions 17 and 18, respectively,
following the missing completely at randommissingness mechanism.

In addition, other model parameters were fixed in all conditions.
At the within-person level, the residual variances of X and Y were
fixed to 0.5. All autoregressive and cross-lagged effects were
allowed to vary across individuals, and their random variances
were equal to their fixed effects multiplied by 0.01. At the between-
person level, the correlations between X at different time points (i.e.,
X1–X4) were fixed to .4, and the correlations of X at different time
points with Y were fixed to .2. The residual variances of X and Y
were fixed to .5.

Results

Figure 4 shows the true and estimated values of the autoregressive
and cross-lagged parameters in the partial-path model and the full-
path model. In the reference condition (Condition 1), all parameters
in the partial-path model deviated from the true values to varying
degrees, while the parameters in the full-path model accurately
recovered the true values. As the number of significant cross-lagged

Table 1
Simulation Conditions in Study 1

Condition a12 a23 a34 a41 a00 c10 c20 c30 c40 c01 c02 c03 c04 N T Ratio Missing (%)

Reference
1 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 0

Test CR
2 0.3 0.3 0.3 0.3 0.1 0 0 0 0.3 0.3 0 0 0 200 15 4:1 0
3 0.3 0.3 0.3 0.3 0.1 0 0 0 0.3 0.3 0.25 0.2 0.15 200 15 4:1 0
4 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0 0 0 200 15 4:1 0

Test AR
5 0.1 0.1 0.1 0.1 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 0
6 0.5 0.5 0.5 0.5 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 0
7 0.3 0.3 0.3 0.3 0.3 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 0
8 0.3 0.3 0.3 0.3 0.5 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 0

Test N
9 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 100 15 4:1 0

10 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 300 15 4:1 0
Test T
11 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 7 4:1 0
12 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 30 4:1 0

Test N&T
13 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 100 30 4:1 0
14 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 300 7 4:1 0

Test ratio
15 0.3 0.3 0.3 0.3 0.1 0.15 0.225 0.3 0.3 0.225 0.15 200 15 3:1 0
16 0.3 0.3 0.3 0.3 0.1 0.15 0.1875 0.225 0.2625a 0.3 0.2625 0.225 0.1875a 200 15 5:1 0

Test missing
17 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 20
18 0.3 0.3 0.3 0.3 0.1 0.15 0.2 0.25 0.3 0.3 0.25 0.2 0.15 200 15 4:1 40

Note. Bold values indicate the parameters varied in each simulation condition. a12, a23, a34, and a41= autoregressive effects of X; a00= autoregressive effects
of Y; c10, c20, c30, and c40= cross-lagged effects of X on Y; c01, c02, c03, and c04= cross-lagged effects of Y on X; N= sample size; T= the number of time
points per subject for the variable with the sparser timescale (i.e., Y ); ratio= timescale mismatch ratio between X and Y; missing= proportion of missing
data for X and Y; CR= cross-lagged effect; AR= autoregressive effect.
a When the timescale mismatch ratio was equal to 5, the cross-lagged effects between X and Y were set as 0.3 (c50 and c01), 0.2625 (c40 and c02), 0.225
(c30 and c03), 0.1875 (c20 and c04), and 0.15 (c10 and c05).

LUO, HU, AND LIU6

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Figure 4
Parameter Estimation Results in Study 1

Note. The vertical axis is the true or estimated value of each parameter. Reference condition: a12= a23= a34= a41= 0.3; a00= 0.1; c10= 0.15; c20=
0.2; c30= 0.25; c40= 0.3; c01= 0.3; c02= 0.25; c03= 0.2; c04= 0.15; N= 200; T= 15; ratio= 4:1; missing= 0%; CR denotes cross-lagged effect;
AR denotes autoregressive effect; N denotes sample size; T denotes the number of time points per subject for the variable with the sparser timescale
(i.e., Y). See the online article for the color version of this figure.
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effects in the true model decreased (Condition 1→Condition 3 and
4→Condition 2), the accuracy of parameter estimation in the
partial-path model increased. In Condition 2, the partial-path
model accurately estimated all parameters and the full-path model
also estimated the parameters with a true value of 0 very well.
However, the parameter estimates of the partial-path model still
showed large biases as the autoregressive effects of X and Y varied,
and the bias of the cross-lagged effect of X on Y (i.e., c40) increased
as the autoregressive effects of X increase (Condition 5→Condition
1→Condition 6). The sample size and the number of time points per
subject of X did not substantially affect the accuracy of parameter
estimates for either model, except that the estimation accuracy for
both models was lower when the number of time points per subject
was smaller, Condition 11 (N= 200, T= 7) and Condition 14 (N=
300, T= 7). In addition, parameter estimates in the partial-path
model showed greater biases as the timescale mismatch ratio
(Condition 15→Condition 1→Condition 16) or the proportion of
missing data (Condition 1→Condition 17→Condition 18)
increased.
Regarding the power, all parameters in both models had power

equal to or larger than 94% in all conditions, except for the autore-
gressive effect of Y (i.e., a00) in the partial-path model, which had a
power of 57% in Condition 11 (N= 200, T= 7) and a power of 75%
in Condition 14 (N= 300, T= 7). The type I error of the parameters
with true values of 0 was equal to or less than 6%. In terms of model
convergence, the full-path model in Conditions 8 (80%), 11(91%),
and 14 (93%) had relatively lower convergence, while the models
in other conditions converged well (equal to or higher than 97%).
The full results for Study 1 are presented in the online supplemental
materials (S1).
The results suggested that the parameter estimation accuracy of the

partial-path model was not as good as that of the full-path model
under a variety of conditions. Their parameter estimation accuracies
were similar only when the cross-lagged effect between X and Y
exists solely at temporally adjacent time points (Condition 2). Both
models performed similarly well in terms of parameter power and
model convergence. In addition, it was worth noting that when the
number of time points per subject became smaller (T= 7), the per-
formance of both models in terms of parameter estimation accuracy,
power, and model convergence decreased, suggesting that this num-
ber of time points may be too small for analyzing dynamic processes
between variables that are mismatched in timescales.

Study 2: Dynamic Reciprocal Effects Between Timescale
Mismatched Variables

Study 2-1: Comparison Between the Average-Score
Model and the Factor Model

Method

Procedure. We first simulated the data of two variables with
mismatched timescales based on the factor model (see Figure 3b).
The timescale of one variable (i.e., X ) was several times denser
than that of the other variable (i.e., Y ). The data were generated in
Mplus with the same settings as in Study 1. The data were then fit
to the average-score model and the factor model, respectively. The
model parameters were estimated in Mplus with the same settings
as in Study 1. The parameter estimation results from converged

models and without outliers (i.e., valid results) were used to evaluate
the performance of the average-score model and the factor model.
Generated data sets with improper solutions (i.e., data sets yielding
results with outliers when fitted to the data-generating models) were
discarded, and the data generation and parameter estimation process
was replicated until 100 valid results were obtained for both models.
The number of data sets generated to obtain 100 valid results is pre-
sented in the online supplemental materials (S2).

To compare the performance of the average-score model and the
factor model, we examined the parameter estimate of the autoregres-
sive and cross-lagged effects of the latent state factors of X and Y, as
well as the within-person factor loadings (in the factor model only).
The estimation accuracy and power of these parameters, as well as
the model convergence, were calculated in the same way as in
Study 1.

Simulation Conditions. Table 2 presents 18 simulation condi-
tions we considered in Study 2. We first set a reference condition
(Condition 1) in which within-person factor loadings of X at differ-
ent time points (i.e., X1�X4) were fixed to 1 and set as 0.7, 0.7, and
0.7, respectively, the autoregressive and cross-lagged effects of
X and Ywere set as 0.3, the sample size was set to 200, and the num-
ber of time points per subject for Y was set to 15, the timescale mis-
match ratio was set to 4:1, and the proportion of missing data for
X and Y was set to 0%.

Then, we varied the within-person factor loadings of X, the autor-
egressive and cross-lagged effects of X and Y, the sample size, and
the number of time points per subject for Y, the timescale mismatch
ratio, and the proportion of missing data to compare the performance
of average-score model and factor model. Specifically, for the
within-person factor loadings of X, we set Conditions 2 and 3 to
reflect the situation where there is some difference between the
within-person factor loadings of X and where they are exactly
equal, respectively. We expected Condition 3 to be the condition
least affected by the differences in within-person factor loadings
of X and most likely to support the average-score model. For the
autoregressive effects of X and Y, we set Conditions 4 and 5 to reflect
common situations in empirical studies where the autoregressive
effect of one variable is larger than the other. For the cross-lagged
effects between X and Y, we set Condition 6 to reflect the situation
where both cross-lagged effects are relatively small. In addition,
we also set Conditions 7 and 8 to represent common situations in
empirical studies where one variable has a greater lagged effect on
the other. Regarding the sample size, the number of time points
per subject, the timescale mismatch ratio, and the proportion of miss-
ing data, we set Conditions 9–18 based on the same rationale as in
Study 1.

In addition, other model parameters were fixed in all conditions.
At the within-person level, the autoregressive and cross-lagged
effects were allowed to vary between persons, and their random var-
iances were equal to their fixed effects multiplied by 0.01. The resid-
ual variances of X1�X4 and Ywere fixed to 0.1. The fixed effects and
random variances of the residual variances of the within-person
latent factors (i.e., latent state factors) of X and Y were fixed to
−0.4 and 0.01, respectively (log-transformed values set in Mplus,
corresponding to true fixed effects of 0.674 and true random vari-
ances of 0.006; Schuurman & Hamaker, 2019). The fixed effect
and random variance of the residual covariance between the two fac-
tors were fixed to −0.7 and 0.01, respectively (log-transformed val-
ues set in Mplus, corresponding to true fixed effects of 0.500 and
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true random variance of 0.003; Schuurman & Hamaker, 2019). At
the between-person level, the between-person factor loadings of X
at different time points (i.e., X1�X4) and of Y were all fixed to 1.
The residual variances of X1�X4 and Y were fixed to 0.1. The resid-
ual variances of the between-person latent factors (i.e., latent trait
factors) of X and Y were fixed to 0.5, and their covariance was
fixed to 0.3.

Results

The true and estimated values of the autoregressive and cross-
lagged effects and the within-person factor loadings in the average-
score model and the factor model are presented in Figure 5. In the
reference condition (Condition 1), the average-score model shows
bias in the estimation of autoregressive and cross-lagged effects.
Moreover, it overestimates one cross-lagged effect and underestimates
the other, which may affect the comparison of the reciprocal effects
between X and Y in empirical studies, and thus distort the conclusion
of their causal dominance. In contrast, the factormodel accurately esti-
mates the autoregressive and cross-lagged effects and the within-
person factor loadings. Although the estimation bias of the average-
score model decreases as the difference between within-person factor
loadings in the true model decreases, the average-score model still
underestimates the autoregressive and cross-lagged effects even
when the within-person factor loadings are equal (Condition 3). In
fact, under all conditions that vary the differences between within-
person factor loadings (Conditions 2 and 3), autoregressive effects

(Conditions 4 and 5), cross-lagged effects (Conditions 6�8), sample
size and the number of time points (Conditions 9�14), timescale mis-
match ratio (Conditions 15 and 16), and the proportion ofmissing data
(Conditions 17 and 18), the average-score model has varying degrees
of parameter estimation bias, whereas the factor model always recov-
ers the true values of the parameters better. It is worth noting that in
Conditions 11 (N= 200, T= 7) and 14 (N= 300, T= 7), the esti-
mates of autoregressive and cross-lagged effects between X and Y
are biased in both models, but the parameter estimates are particularly
biased in the average-score model.

In terms of the power of parameters, all parameters with true val-
ues equal to or greater than 0.3 had a power of 100%. The power of
parameters with lower truth values (i.e., 0.1) was higher than 89% in
the factor model and 78% in the average-score model. In terms of
model convergence, both models had convergent rates higher than
72% in all conditions. In Conditions 11 (N= 200, T= 7) and 14
(N= 300, T= 7), both models had relatively low rates of conver-
gence (the average-score model= 92.3% and 82.4%, the factor
model= 91.6% and 72.1%). The full results for Study 2 are pre-
sented in the online supplemental materials (S2).

Overall, the bias in the parameter estimates of the average-score
model was consistently larger than that of the factor model, even
when the factor loadings of X at different time points (i.e., X1�X4)
were equal (Condition 2). Moreover, the power of the parameters
with smaller true values (i.e., 0.1) was slightly lower in the average-
score model than in the factor model. The model convergence of
both models was acceptable. It should be noted that, since the factor

Table 2
Simulation Conditions in Study 2-1

Condition l(W)
1 l(W)

2 l(W)
3 l(W)

4 aXX aYY cXY cYX N T Ratio Missing (%)

Reference
1 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 15 4:1 0

Test loadings
2 1 0.9 0.8 0.7 0.3 0.3 0.3 0.3 200 15 4:1 0
3 1 1 1 1 0.3 0.3 0.3 0.3 200 15 4:1 0

Test AR
4 1 0.7 0.7 0.7 0.2 0.4 0.3 0.3 200 15 4:1 0
5 1 0.7 0.7 0.7 0.4 0.2 0.3 0.3 200 15 4:1 0

Test CR
6 1 0.7 0.7 0.7 0.3 0.3 0.1 0.1 200 15 4:1 0
7 1 0.7 0.7 0.7 0.3 0.3 0.3 0.1 200 15 4:1 0
8 1 0.7 0.7 0.7 0.3 0.3 0.1 0.3 200 15 4:1 0

Test N
9 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 100 15 4:1 0

10 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 300 15 4:1 0
Test T
11 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 7 4:1 0
12 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 30 4:1 0

Test N&T
13 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 100 30 4:1 0
14 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 300 7 4:1 0

Test ratio
15 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 15 3:1 0
16 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 15 5:1 0

Test missing
17 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 15 4:1 20
18 1 0.7 0.7 0.7 0.3 0.3 0.3 0.3 200 15 4:1 40

Note. Bold values indicate the parameters varied in each simulation condition. l(W)
1 , l(W)

2 , l(W)
3 , and l(W)

4 =within-person factor loadings of X at different time
points (i.e., X1� X4); aXX and aYY= autoregressive effects of X and Y; cXY and cYX= cross-lagged effects between X and Y; N= sample size; T= number of
time points per subject for Y; ratio= timescale mismatch ratio between X and Y; missing= proportion of missing data for X and Y; AR= autoregressive
effect; CR= cross-lagged effect.
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Figure 5
Parameter Estimation Results in Study 2-1

Note. The vertical axis is the true or estimated value of each parameter. Reference condition: l(W)
1 = 1; l(W)

2 = 0.7; l(W)
3 = 0.7; l(W)

4 = 0.7; aXX=
aYY= cXY= cYX= 0.3;N= 200; T= 15; ratio= 4:1; missing= 0%; AR denotes autoregressive effect; CR denotes cross-lagged effect;N denotes
sample size; T denotes the number of time points per subject for the variable with the sparser timescale (i.e., Y). See the online article for the color
version of this figure.
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model was the true model, it may have an inherent advantage over
the average-score model in this comparison, making the comparison
not entirely fair. This limitation should be taken into account when
interpreting the simulation results. In addition, similar to Study 1,
when the number of time points per subject for X was only seven
(Conditions 11 and 14), the parameter estimation accuracy, power,
and model convergence decreased for both models, suggesting
that this number of time points may not be sufficient to explore
the reciprocal effects between variables with mismatched timescales.

Study 2-2: Comparison Between the Factor Model and
the Adjusted Factor Model

Method

Procedure. After confirming that the factor model outper-
formed the average-score model, we further investigated whether
the factor model or the adjusted factor model was more suitable
for analyzing variables with mismatched timescales. The data were
first simulated with the timescale of one variable (i.e., X ) was several
times denser than that of the other variable (i.e., Y ). Specifically, we
manipulated whether the regression effects between X at different
time points were zero, making the true model a factor model
(Figure 3b) or an adjusted factor model (Figure 3c). The data were
then fitted to the factor model and the adjusted factor model, respec-
tively. The data generation and parameter estimation were performed
in Mplus with the same settings as in Study 1. Data generation and
parameter estimation were replicated until 100 valid results were
obtained for both models. The number of data sets generated to
obtain 100 valid results for each simulation condition is shown in
the online supplemental materials (S3).
Finally, we examined the estimation accuracy and power of the

autoregressive and cross-lagged effects of the latent state factors of
X and Y, the within-person factor loadings, the autoregressive effects
between X at different time points (i.e., X1�X4; in the adjusted factor
model only), as well as the model convergence. The evaluation
indexes were calculated in the same way as in Study 1.
Simulation Conditions. We compared the performance of the

factor model and the adjusted factor model under 42 simulation condi-
tions (see Table 3). We first considered three main types of conditions,
with no, small, or large regression effects (i.e., aw; a12, a23, a34, and a41)
between X at different time points (i.e., X1�X4). In each type of condi-
tion, we set a reference condition (Condition 1) in which the autoregres-
sive and cross-lagged effects of X and Ywere set as 0.3, the sample size
was set to 200, and the number of time points per subject for Ywas set to
15, the timescale mismatch ratio was set to 4:1, and the proportion of
missing data for X and Y was set to 0%.
Then, we varied the autoregressive and cross-lagged effects of

X and Y (Conditions 2�6), the sample size and the number of
time points (Conditions 7�10), the timescale mismatch ratio
(Conditions 11 and 12), and the proportion of missing data
(Conditions 13 and 14) in each type of conditions based on the
same rationale as in Study 2-1. We only considered a larger number
of time points per subject for Y (Conditions 9 and 10; T= 30) for two
main reasons. First, both Study 1 and Study 2-1 suggested that a
smaller number of time points (i.e., T= 7) may not be appropriate
for examining the dynamic interplay between variables that were
mismatched in timescales. Second, the number of data sets generated
(i.e., 430 and 581 in Conditions 11 and 14, respectively) to obtain

100 valid results was quite large for the condition with a smaller
number of time points in the factor model in Study 2-1 (see
Tables S2.11 and S2.14 in the online supplemental materials),
which required considerable computational resources. In the
adjusted factor model, it could be expected that more data sets
may needed. Therefore, we did not test the condition with a smaller
number of time points (i.e., T= 7) in Study 2-2.

In addition, other model parameters were fixed in all conditions.
At the within-person level, the autoregressive and cross-lagged
effects were allowed to vary from person to person, and their ran-
dom variances were equal to their fixed effects multiplied by 0.01.
The residual variances of X1�X4 and Y, the fixed effects and ran-
dom variances of the residual variances and covariance of the latent
state factors of X and Y were set to the same values as in Study 2-1.
At the between-person level, the between-person factor loadings,
and the residual variances of X at different time points (i.e.,
X1�X4) and of Y, as well as the residual variances and covariance
of the latent trait factors of X and Y, were fixed to the same values as
in Study 2-1.

Results

Figures 6 (aw= 0), 7 (aw= 0.1), and 8 (aw= 0.3) show the true
and estimated values of the autoregressive and cross-lagged effects,
the within-person factor loadings, and the regression effects between
X at different time points (in the adjusted factor model only). At first
glance, we found that as the regression effects (i.e., aw) between X at
different time points increased (from 0, 0.1, to 0.3), the bias of the
parameter estimates in the factor model became larger, especially
for the within-person factor loadings, whereas the adjusted factor

Table 3
Simulation Conditions in Study 2-2

Condition aXX aYY cXY cYX N T Ratio Missing (%)

Reference
1 0.3 0.3 0.3 0.3 200 15 4:1 0

Test AR
2 0.2 0.4 0.3 0.3 200 15 4:1 0
3 0.4 0.2 0.3 0.3 200 15 4:1 0

Test CR
4 0.3 0.3 0.1 0.1 200 15 4:1 0
5 0.3 0.3 0.3 0.1 200 15 4:1 0
6 0.3 0.3 0.1 0.3 200 15 4:1 0

Test N
7 0.3 0.3 0.3 0.3 100 15 4:1 0
8 0.3 0.3 0.3 0.3 300 15 4:1 0

Test T
9 0.3 0.3 0.3 0.3 200 30 4:1 0

Test N&T
10 0.3 0.3 0.3 0.3 100 30 4:1 0

Test ratio
11 0.3 0.3 0.3 0.3 200 15 3:1 0
12 0.3 0.3 0.3 0.3 200 15 5:1 0

Test missing
13 0.3 0.3 0.3 0.3 200 15 4:1 20
14 0.3 0.3 0.3 0.3 200 15 4:1 40

Note. Bold values indicate the parameters varied in each simulation
condition. These conditions are nested within aw (with three possible
values 0, 0.1, and 0.3). aXX and aYY= autoregressive effects of X and Y;
cXY and cYX= cross-lagged effects between X and Y; N= sample size; T=
the number of time points per subject for Y; ratio= timescale mismatch
ratio between X and Y; missing= proportion of missing data for X and Y;
AR= autoregressive effect; CR= cross-lagged effect.
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model always recovered the parameter estimates accurately. This result
held across all conditions with different values of the true autoregres-
sive and cross-lagged effects of X and Y, sample size, number of time
points per subject, timescale mismatch ratio, and proportion of miss-
ing data. Specifically, in the adjusted factor model, the deviations of
the estimates from the true values were less than 0.024 for the

autoregressive and cross-lagged effects (with true values from 0.1 to
0.4), and 0.095 for the within-person factor loadings (with a true
value of 1). In contrast, in the factor model, the deviations of the autor-
egressive and cross-lagged effects from the true values were as large
as 0.068, and the overestimation of the within-person factor loadings
from the true values were as large as 0.393.

Figure 6
Parameter Estimation Results in Study 2-2 (aw= 0)

Note. The vertical axis is the true or estimated value of each parameter. Reference condition: aXX= aYY= cXY= cYX= 0.3; N= 200; T= 15; ratio= 4:1;
missing= 0%; AR denotes autoregressive effect; CR denotes cross-lagged effect; N denotes sample size; T denotes the number of time points per subject
for the variable with the sparser timescale (i.e., Y). See the online article for the color version of this figure.

LUO, HU, AND LIU12

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



However, a further look revealed that when therewas no or a small
regression effect between X at different time points (i.e., aw= 0 or
0.1), both models had small estimation biases (less than 0.019 for
the adjusted factor model, and 0.029 for the factor model) for the
autoregressive and cross-lagged effects between X and Y, which

were of most interest in empirical studies. Nonetheless, in these
cases, the within-person factor loadings in the factor model were
still somewhat overestimated (with a bias of about 0.1).

In terms of the power and type I error, the autoregressive and
cross-lagged effects as well as the within-person factor loadings

Figure 7
Parameter Estimation Results in Study 2-2 (aw= 0.1)

Note. The vertical axis is the true or estimated value of each parameter. Reference condition: aXX= aYY= cXY= cYX= 0.3; N= 200; T= 15; ratio= 4:1;
missing= 0%; AR denotes autoregressive effect; CR denotes cross-lagged effect; N denotes sample size; T denotes the number of time points per subject
for the variable with the sparser timescale (i.e., Y). See the online article for the color version of this figure.
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had a power equal to or larger than 89%. For the regression effects
between X at different time points, the type I error of the regression
effects with a true value of 0 was lower than 21%. The power of the
regression effects with a true value of 0.1 was equal to or greater than
64% in most cases, except for the regression effect between the third
and fourth time points of X (i.e., a34) and the regression effects in

Conditions 7, 10 (N= 100), 11 (mismatch ratio= 3:1), 13, and 14
(proportions of missing data of 20% and 40%, respectively). The
power of the regression effects with a true value of 0.3 was equal
to or greater than 92%, except for some regression effect of X in
Conditions 7 (51%) and 14 (73%). In terms of model convergence,
the convergence of the factor model was slightly better than that of

Figure 8
Parameter Estimation Results in Study 2-2 (aw= 0.3)

Note. The vertical axis is the true or estimated value of each parameter. Reference condition: aXX= aYY= cXY= cYX= 0.3; N= 200; T= 15; ratio= 4:1;
missing= 0%; AR denotes autoregressive effect; CR denotes cross-lagged effect; N denotes sample size; T denotes the number of time points per subject
for the variable with the sparser timescale (i.e., Y). See the online article for the color version of this figure.
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the adjusted factor model, but both models had acceptable rates of
convergence (90%–100% for the factor model; 88%–100% for the
adjusted factor model).
Overall, as the regression effects (i.e., aw) between X at different

time points increased (from 0, 0.1, to 0.3), the estimation bias of the
parameters in the factor model became larger, whereas the adjusted
factor model accurately estimated the parameters. This was particu-
larly evident for thewithin-person factor loadings, indicating that the
within-person factor loadings estimated with the factor model did
not accurately represent the contribution of X at different time points
to its overall latent level.
However, when we focused on the autoregressive and cross-lagged

effects between X and Y, which were key parameters of great interest
in empirical studies, we found that both models showed low estima-
tion bias, especially when there was no or a small regression effect
between X at different time points (i.e., aw= 0 or 0.1). In addition,
both models had performed similarly well in terms of the power of
the autoregressive and cross-lagged effects. The convergence rate of
the factor model was slightly higher than that of the adjusted factor
model. These results suggest that the factor model may be useful
for estimating the overall reciprocal effect between X and Y, especially
when the regression effect (i.e., aw) was small between X at different
time points. Thus, the factor model may provide researchers with a
practical method for estimating dynamic bidirectional effects between
variables with mismatched timescales when the adjusted factor model
does not converge successfully.

Study 3: Application to Timescale Mismatch Data

Empirical Data

The EMA data from the UT1000 project (Wu et al., 2021), a mul-
timodal data collection study conducted at the University of Texas at
Austin, were used to show the differences in parameter estimation
results between different modeling methods. We first selected data
from October 10, 2018, to October 31, 2018, based on daily subject
participation rates. Then, we removed individuals with low compli-
ance rates to avoid a high percentage of missingness. Finally, data
from 381 individuals for 22 consecutive days were used for the anal-
yses. In this study, we focused on the dynamic bidirectional relation
between stress feelings and sleep quality, two variables with mis-
matched timescales. Participants reported their feelings of stress at
9 a.m., 12 p.m., 15 p.m., and 18 p.m. each day (i.e., “I am feeling
stress”), from 1= not at all to 4= very much, and reported their
sleep quality the previous night each morning (“How restful was
your sleep?”) from 1= not at all restful to 4= very restful.
We demonstrated the two types of research questions that may be

of interest in empirical studies on timescale mismatch variables. On
the one hand, to investigate the dynamic interaction processes
between stress feelings and sleep quality, we fitted the data to the
partial-path model and the full-path model. On the other hand, to
examine the overall reciprocal effects between stress feelings and
sleep quality, we used the average-score model, the factor model,
and the adjusted factor model. We used Bayesian estimation and
the Markov chain Monte Carlo algorithm in Mplus 8.10. Two
Gibbs-sampler chains were used, each with a minimum number of
iterations of 5,000. Models with the PSR less than 1.1 for all param-
eters were considered converged. Data and Mplus syntax are avail-
able at https://osf.io/fdpsj.

Results

The results of the unstandardized parameter estimation for the two
types of research questions and the corresponding models are pre-
sented in Tables 4 and 5, respectively. As shown in Table 4, stress feel-
ings and sleep quality had significant positive autoregressive effects at
different time intervals. Both models showed that better sleep quality
predicted less stress feelings in the morning, and more stress feelings
in the evening predicted lower sleep quality the next day. However,
the cross-lagged effects estimated in the partial-path model
(c01 = −0.147[−0.177, 0.118]; c40 = −0.099[−0.131, − 0.066])
and the full-path model (c01 = −0.148[−0.179, − 0.118];
c40 = −0.070[−0.110, − 0.030]) were different. The partial-path
model exaggerated the cross-lagged effect of stress feelings in the eve-
ning on sleep quality. Moreover, the full-path model indicated that
there were two additional significant cross-lagged effects of sleep
quality on stress feelings, and one significant cross-lagged effect of
stress feelings on sleep quality that day. Specifically, there were neg-
ative cross-lagged effects between sleep quality and the third measure
of stress feelings each day (i.e., at 15 p.m.), suggesting a dynamic
bidirectional relation between sleep and stress feelings in the after-
noon. Additionally, sleep quality had a weaker lagged effect on the
fourth measures of stress feelings each day (i.e., at 18 p.m.), suggest-
ing that sleep quality might even mitigate stress levels later in the next
day. These results illustrate the importance of using the full-path
model to better understand the dynamic processes between timescale
mismatched variables, as it not only helps to accurately estimate the
dynamic interaction between sleep quality and stress feelings at the
closest time points, but also reveals time-specific cross-lagged effects
between them.

In Table 5, we found significant positive autoregressive effects of
stress feelings and sleep quality and significant negative cross-
lagged effects between stress feelings and sleep quality across
days. However, the autoregressive effect of stress feelings was

Table 4
Unstandardized Parameter Estimates of the Bidirectional Relation
Between Stress Feelings and Sleep Quality Based on Partial-Path
Model and Full-Path Model

Parameter

Partial-path model Full-path model

B 95% CI B 95% CI

a00 0.078 [0.049, 0.109] 0.070 [0.039, 0.100]
a12 0.538 [0.506, 0.569] 0.537 [0.506, 0.569]
a23 0.565 [0.533, 0.597] 0.559 [0.527, 0.592]
a34 0.554 [0.522, 0.586] 0.551 [0.518, 0.584]
a41 0.391 [0.358, 0.424] 0.391 [0.357, 0.424]
c01 −0.147 [−0.177, 0.118] −0.148 [−0.179, −0.118]
c02 −0.003 [−0.027, 0.022]
c03 −0.049 [−0.072, −0.025]
c04 −0.026 [−0.051, −0.001]
c10 −0.007 [−0.049, 0.033]
c20 −0.009 [−0.052, 0.036]
c30 −0.045 [−0.086, −0.002]
c40 −0.099 [−0.131, −0.066] −0.070 [−0.110, −0.030]

Note. CI= confidence interval; a00= autoregressive effect of sleep quality
at a 24-hr time interval; a12, a23, a34, and a41= autoregressive effects of stress
feelings at a 3-hr time interval; c01, c02, c03, and c04= cross-lagged effects of
sleep quality on stress feelings; c10, c20, c30, and c40= cross-lagged effects of
stress feelings on sleep quality.
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stronger in the factor and adjusted factor models compared to the
average-score model. Furthermore, the negative cross-lagged effect
of stress feelings on sleep quality became stronger, and the negative
cross-lagged effect of sleep quality on stress feelings became
weaker from the average model, the factor model, to the adjusted
factor model. Since the adjusted factor model showed small to
moderate regression effects between stress feelings at different
time points each day, the results from the adjusted factor model
were more reliable according to the simulation results in Study
2-2. This selection was further supported by examining the esti-
mates of within-person factor loadings of stress feelings at different
time points. The factor model showed similar loadings across time
points, whereas the adjusted factor model indicated that the third
measure of stress feelings each day (i.e., at 15 p.m.) had the stron-
gest loading on the latent state factor of stress feelings. The latter
was in accord with the results from the full-path model, which sug-
gested the relatively large contribution of the third time point of
stress feelings on the dynamic reciprocal relation between sleep
quality and stress feelings. Although this model selection did not
alter the main conclusions on the dynamic interplay between
sleep and stress (i.e., the significance of autoregressive and cross-
lagged effects was not affected by the model choice), the adjusted
factor model promotes a deeper understanding of the contribution
and temporal dependency between different time points of stress
feelings within a day.

Discussion

Despite the rapid development of methods for analyzing ILD,
some issues related to ILD analyses in real-world data have not
received much attention. Applied researchers have been confronted
with the problem of timescale mismatch between variables, but have
lacked appropriate methodological guidance to address this issue. In
this study, we reviewed the current practices for modeling variables
with mismatched timescales (i.e., the partial-path model, and the
average-score model), examined their limitations, and proposed pos-
sible solutions (i.e., the full-path model, the factor model, and the
adjusted factor model) to timescale mismatch based on DSEMs.

Through three simulation studies, we showed the problems in the
existing approaches and tested the effectiveness of the proposed
approaches under various conditions. Our preliminary explorations
into the problem of timescale mismatch encourage more attention
and examination of this practical problem in ILD and provide feasi-
ble solutions for applied researchers.

Dynamic Interaction Processes of Timescale Mismatched
Variables

One of the main goals in studies collecting data with timescale
mismatched variables is to understand the detailed processes of
the dynamic interaction between variables. To this end, previous
studies have used separate multilevel models for different time
lags between variables with mismatch timescales. However, this
modeling approach did not consider the temporal relations between
the different time points of the variable with a denser timescale and
may not accurately describe the dynamic interactions between vari-
ables. Based on a more integrated modeling framework (i.e.,
DSEM), other researchers have constructed the partial-path model,
which considered the autoregressive effects between different time
points of the variable with a denser timescale, but estimated only
the cross-lagged effect between the closest time points between
timescale mismatched variables (Lücke et al., 2023). For this partial-
path model, our simulation results suggested that it underestimated
the cross-lagged effect from the variable with a sparser timescale
to the variable with a denser timescale, and overestimated the cross-
lagged effect on the other direction. In contrast, the full-path model
proposed in this study considered the cross-lagged effects of all time
points of the variablewith a denser timescale with the variablewith a
sparser timescale, which better reflected the processes of their
dynamic interactions. More importantly, the full-path model exam-
ined the unique effect of different time points, which helped to reveal
time-specific effects in the dynamic interplay between timescale
mismatch variables. Therefore, we suggest that applied researchers
adopt the full-path model rather than the partial-path model to better
examine the dynamic interaction processes of timescale mismatched
variables.

Table 5
Unstandardized Parameter Estimates of the Bidirectional Relation Between Stress Feelings
and Sleep Quality Based on Average-Score Model, Factor Model, and Adjusted Factor Model

Parameter

Average-score model Factor model Adjusted factor model

B 95% CI B 95%CI B 95% CI

a12 0.197 [0.148, 0.246]
a23 0.078 [0.010, 0.140]
a34 0.113 [0.036, 0.183]
a41 0.178 [0.142, 0.214]
aXX 0.435 [0.402, 0.466] 0.575 [0.540, 0.609] 0.551 [0.510, 0.590]
aYY 0.073 [0.043, 0.103] 0.073 [0.040, 0.106] 0.071 [0.039, 0.108]
cXY −0.111 [−0.148, −0.076] −0.143 [−0.193, −0.094] −0.191 [−0.259, −0.128]
cYX −0.080 [−0.099, −0.060] −0.070 [−0.093, −0.050] −0.052 [−0.073, −0.034]
l2 1.076 [1.025, 1.129] 1.026 [0.928, 1.129]
l3 1.078 [1.078, 1.138] 1.260 [1.098, 1.423]
l4 0.987 [0.933, 1.047] 1.090 [0.913, 1.299]

Note. CI= confidence interval; a12, a23, a34, and a41=within-day regression effects of stress feelings;
aXX and aYY= across-day autoregressive effects of stress feelings and sleep quality, respectively; cXY and
cYX= cross-lagged effects between stress feelings and sleep quality; l2, l3, and l4= loadings of stress
feelings at different time points within a day on the latent factor of stress feelings of that day.
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Dynamic Reciprocal Effects Between Timescale
Mismatched Variables

The other research question of great interest in studies on time-
scale mismatched variables is the dynamic reciprocal effects
between variables. Since variables with mismatched timescales
may not be easily fitted to models commonly used in ILD analyses,
an intuitive approach used in previous studies is aggregating vari-
ables with denser timescales to transform the variables to sparser
timescales (Langener et al., 2024; Seizer et al., 2024), and then fit
an average-score model (Neubauer et al., 2021). However, our sim-
ulation study found that the average-score model underestimated the
autoregressive effects between variables. Even worse, it overesti-
mated cross-lagged effects in one direction and underestimated
them in the other. Since researchers may infer the casual relations
(i.e., Granger causal relations; Granger, 1969) between variables
based on the comparison of their dynamic reciprocal effects, the
biased estimation of cross-lagged effects in the average-score
model may alter the results of the comparison of cross-lagged effects
and mislead researchers of the causal dominance between variables.
In this study, we propose two other modeling approaches (i.e., the

factor model, and the adjusted factor model) to match the timescales
of variables by constructing a latent state factor for the variable with
a denser timescale. The simulation results suggested that the factor
model had higher parameter estimation accuracy than the average-
score model. In addition, both the factor model and the adjusted fac-
tor model accurately estimated the autoregressive and cross-lagged
effects between variables with mismatched timescales when there
were no or small regression effects between different time points
of variables with denser timescales. When these regression effects
became larger (e.g., 0.3), the factor model estimated the autoregres-
sive and cross-lagged effects less accurately, while the adjusted fac-
tor model still performed well. Therefore, it is recommended to
construct an adjusted factor model to examine the dynamic recipro-
cal effects between timescale mismatched variables.
However, it should be noted that in our simulation study, the con-

vergence rate of the adjusted factor model was relatively lower than
that of the factor model. Moreover, it can be expected that the
adjusted factor model is more difficult to converge than the factor
model in empirical studies. Considering the relatively small bias
of the factor model in estimating autoregressive and cross-lagged
effects, we believe that the factor model is an acceptable and practi-
cal approach for investigating the bidirectional relations between
variables with mismatched timescales, especially when the adjusted
factor model fails to converge. Still, it should be cautioned that the
within-person factor loadings estimated in the factor model should
not be interpreted as contributions from different time points of var-
iables with denser timescales, as our simulation results showed that
the bias in their estimation increased as the regression effects
between different time points of variables with denser timescales
increased.
In addition, the impacts of sample size, number of time points, and

their interplay on model performance should be noted. Most condi-
tions (except N= 200, T= 7; or N= 300, T= 7) produced results
similar to the reference condition (N= 200 and T= 15). This sug-
gests that our main findings are robust across varying combinations
of sample sizes and number of time points. However, conditions
with fewer time points (T= 7) showed greater biases in parameter
estimation, as well as lower power andmodel convergence compared

to the reference condition, regardless of sample size (N= 200 or
300). This indicates that this number of time points may be insuffi-
cient to explore the reciprocal effects between variables with mis-
matched timescales and that a larger sample size may not be able
to compensate for such a small number of time points.

Contributions and Implications

Researchers have emphasized the importance of selecting
appropriate measurement timescales to effectively capture
dynamic processes of various variables in intensive longitudinal
studies (Adolf et al., 2021; Batra et al., 2023; Langener et al.,
2024). However, most previous studies measured all variables
using the same timescale (Luo et al., 2024), which may be due
to the lack of methodological guidance for analyzing the dynamic
relations between variables with mismatched timescales. This
approach can lead to several problems. On the one hand, using a
sparser timescale to assess all variables may not accurately capture
fluctuations in some frequently changing variables (e.g., affective
states). Moreover, employing measurement intervals that are
sparser than the true intervals at which the processes operate can
result in highly biased autoregressive estimates (Batra et al.,
2023). On the other hand, assessing all variables with a denser
timescale may be unnecessary or even impractical, as it may
impose an excessive burden on participants, which reduces their
compliance (Vachon et al., 2019) and data quality. Therefore, it
is recommended to choose appropriate timescales for different
variables based on the characteristics of their dynamic processes.

Nevertheless, it should be recognized that researchers do not
always have a precise understanding of the true underlying process,
and that the measurement timescales used to collect data do not nec-
essarily reflect the theoretical timescales of the processes of interest.
To address this issue, recent studies have offered some valuable
suggestions. First, researchers can select measurement timescales
guided by relevant theoretical and conceptual considerations
(Seizer et al., 2024; Velozo et al., 2024), as well as previous studies
or reviews that provide evidence and recommendations on the sam-
pling timescales of the same variable (e.g., heart rate variability;
Shaffer & Ginsberg, 2017). Second, in cases where the choice of
measurement timescales is unclear and multiple timescales are plau-
sible, researchers can consider conducting a multiverse analysis
(Steegen et al., 2016) to explore the results from different timescales
and assess the robustness of their findings (Langener et al., 2024).
Third, when theoretical knowledge is very limited, researchers can
use the method proposed by Adolf et al. (2021) to estimate an opti-
mal sampling interval that leads to highest estimation reliability (i.e.,
minimal standard errors) based on previous estimates of the autore-
gressive effects. By integrating theoretical and empirical knowledge
and utilizing relevant statistical methods, researchers can determine
appropriate measurement timescales that better reflect theoretical
timescales and gain more confidence in further analyses of the
dynamic interplay between variables with mismatched timescale.

In addition, recent technology advances have opened up new
opportunities to more accurately and objectively measure the
dynamics of everyday experiences. Fine-grained and multimodal
ILD collected by wearable trackers, sensors, and smartphones are
able to capture fluctuations in state variables on denser timescales,
which may help us deepen our understanding of the dynamic
processes and interplay mechanisms between variables. However,
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previous studies have typically examined these data at the aggregate
level and have not fully exploited the potential of these valuable data
(Kim et al., 2018; Schick et al., 2023). In addition, studies that used
appropriate statistical methods to synthesize data from subjective
reports and objective measures and explore dynamic bidirectional
relations between variables are still limited. Technology develop-
ments call for effective methods to better integrate and analyze
data on variables with mismatched timescales.
Focusing on two types of research questions explored by previous

studies with timescale mismatched variables (i.e., dynamic interac-
tion processes and overall reciprocal effects between variables),
we demonstrated the limitations of current practices and tested the
effectiveness of the proposed approaches through three simulation
studies. Based on the findings, we provide feasible methods and
practical suggestions for applied researchers who collect data of var-
iables with mismatched timescales. This could not only facilitate the
use of appropriate timescales for collecting and analyzing data
according to the characteristics of different variables but also the
wider application of objective measures in intensive longitudinal
studies and their combination with subjective reports.

Limitations and Future Directions

The study has limitations that need to be noted. First, this study
examined a relatively small degree of timescale mismatch between
the two variables (from 3:1 to 5:1). The reason for setting these ratios
of timescale mismatch between variables is because it is common in
EMA studies to take measurements three to six times per day (Luo et
al., 2024). However, for variables with large differences in timescale
densities (e.g., one variable is 10 times denser than the other), other
suitable solutions may be needed, especially if one of the variables
is based on objective measurements using digital devices. One possi-
ble solution is to construct a three-level model. For example, Kanning
and Schoebi (2016) examined the dynamic associations between
affective states and physical activity with activity by constructing a
three-level multilevel model, with physical activity assessed at
5-min time intervals (Level 1) being nested within momentary affects
assessed at 45-min time intervals (Level 2), which were nested within
persons (Level 3). However, it remains to be explored how to con-
struct a three-level model under the DSEM framework, where Level
1 (e.g., within-day level) includes the autoregressive process of the
variable with a denser timescale, Level 2 (e.g., between-day level)
focuses on the dynamic bidirectional relation between the overall
level of the denser variable and the variable with a sparser timescale,
and Level 3 (e.g., between-person level) considers the between-
person association of the two variables.
In addition, the generalizability of our findings may be limited to

the simulation conditions considered in this study. In the three sim-
ulation studies, we mainly varied the values of critical parameters,
the sample size, the number of time points per subject, the timescale
mismatch ratio, and the proportion of missing data to explore
whether our findings held in different situations. For example,
regarding the proportion of missing data, while we have confirmed
the robustness of our findings with relatively small proportions of
missing data (e.g., 20% and 40%), it remains unclear whether
our conclusions still hold under conditions with higher proportions
of missing data (e.g., 60%) and different missing mechanisms
(i.e., missing at random, and missing not at random). Given the
considerable time and computational resources required for these

simulations, examining the impacts of all potentially relevant factors
may not be feasible. Nevertheless, real-life studies may be more
diverse than the conditions we set, and other potentially influencing
factors may need to be further considered in future studies on time-
scale mismatch.
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